Paulo e o Break Even Point

Oi Paulo, tudo bem?

A dúvida que você apresenta é simples de ser respondida se você tiver bem assimilado os conceitos financeiros básicos (como custo, venda, lucro, desconto, receita e despesa) e a teoria de função linear ou do 1º grau.

Vamos lá.

Primeiro, lembre que o conceito básico entre custo (C), venda (V) e lucro (L) é dado por

V = L + C

Assim, torna-se simples escrever as funções do exercício que você tem dúvida. Vamos lá.

Os dados fornecidos são:

Custo unitário de produção (Cup) – R$ 5,00

Custo fixo associado à produção (Cfp) – R$ 30,00

Preço de Venda (V) – R$ 6,50

Note que com essas informações já podemos determinar o lucro (L) na venda de uma unidade do produto:

V = L + C

6,50 = L + 5,00

L = 6,50 – 5,00

L = 1,50

De forma análoga escrevemos as funções pedidas, veja:

a) a função custo total

O custo total é a soma de todos os custos. Nesse caso temos:

Custo fixo associado à produção (Cfp) – R$ 30,00

Custo unitário de produção (Cup) – R$ 5,00

Observe que o valor de Cup é proporcional à quantidade, isto é:

1 unidade  – Cup(1) = 1 x R$ 5,00 = R$ 5,00

2 unidades – Cup(2) = 2 x R$ 5,00 = R$ 10,00

3 unidades – Cup(3) = 3 x R$ 5,00 = R$ 15,00

4 unidades – Cup(4) = 4 x R$ 5,00 = R$ 20,00

.

.

.

q unidades – Ct(q) = q x R$ 5,00 = R$ 5q

Então, a função custo total (Ct) para produzir q unidades do produto é dada por

Ct(q) = Cup(q) + Cfp

Ct(q) = 5q + 30

b) A função receita total

A receita total (Rt) é a soma de todas as receitas. Nesse caso, temos:

Preço de Venda (V) – R$ 6,50

Analogamente, o valor V é proporcional à quantidade q , isto é:

1 unidades  – V(1) = 1 x R$ 6,50 = R$ 6,50

2 unidades – V(2) = 2 x R$ 6,50 = R$ 13,00

3 unidades – V(3) = 3 x R$ 6,50 = R$ 19,50

4 unidades – V(4) = 4 x R$ 6,50 = R$ 26,00

.

.

.

q unidades – V(q) = q x R$ 6,50 = R$ 6,50q

Então, a função receita total (Rt) que informa a receita da venda de q unidades do produto é dada por

Rt(q) = V(q)

Rt(q) = 6,50q

c) A função lucro total (Lt)

Como V = C + L, podemos expressar o lucro (L) como a diferença L = V – C.

Além disso, como V = Rt e C = Ct, podemos escrever a função lucro total como a diferença das funções receita total e custo total, assim:

Lt = Rt – Ct

Que em função do número q de unidades produzidas/vendidas fica:

Lt(q) = Rt(q) – Ct(q)

Lt(q) = 6,50q – (5q + 30)

Lt(q) = 6,50q – 5q – 30

Lt(q) = 1,50q – 30

d) O Break Even Point (BEP)

O Break Even Point (BEP) é o ponto de equilíbrio entre receitas e despesas, isto é, quando o total de receitas é igual ao total de custos e – claro – o lucro é nulo.

Desse modo, encontrar o BEP significa encontrar o valor de q que é a solução da expressão

Lt(q) = 0

1,50q – 30 = 0

1,50q = 30

q = 30/1,50

q = 300/15

q = 20

Note que a expressão Lt(q) = 0 é equivalente à expressão Rt(q) = Ct(q).

Esta última pode ser interpretada geometricamente sendo o ponto de interseção entre as retas Rt(q) e Ct(q). (veja no esquema)

e) a produção necessária para um lucro de R$ 120,00

Aqui queremos determinar a quantidade q de produtos que geram um lucro de R$ 120,00.   Mais uma vez usaremos a função lucro total que, agora, queremos que assuma o valor 120, ou seja:

Lt(q) = 120

1,50q – 30 = 120

1,50q = 120 + 30

q = 150/1,50

q = 1500/15

q = 100

Entendeu?

Espero ter ajudado.

Bons Estudos!

Para Saber Mais: