Paulo e o Break Even Point

Oi Paulo, tudo bem?

A dúvida que você apresenta é simples de ser respondida se você tiver bem assimilado os conceitos financeiros básicos (como custo, venda, lucro, desconto, receita e despesa) e a teoria de função linear ou do 1º grau.

Vamos lá.

Primeiro, lembre que o conceito básico entre custo (C), venda (V) e lucro (L) é dado por

V = L + C

Assim, torna-se simples escrever as funções do exercício que você tem dúvida. Vamos lá.

Os dados fornecidos são:

Custo unitário de produção (Cup) – R$ 5,00

Custo fixo associado à produção (Cfp) – R$ 30,00

Preço de Venda (V) – R$ 6,50

Note que com essas informações já podemos determinar o lucro (L) na venda de uma unidade do produto:

V = L + C

6,50 = L + 5,00

L = 6,50 – 5,00

L = 1,50

De forma análoga escrevemos as funções pedidas, veja:

a) a função custo total

O custo total é a soma de todos os custos. Nesse caso temos:

Custo fixo associado à produção (Cfp) – R$ 30,00

Custo unitário de produção (Cup) – R$ 5,00

Observe que o valor de Cup é proporcional à quantidade, isto é:

1 unidade  – Cup(1) = 1 x R$ 5,00 = R$ 5,00

2 unidades – Cup(2) = 2 x R$ 5,00 = R$ 10,00

3 unidades – Cup(3) = 3 x R$ 5,00 = R$ 15,00

4 unidades – Cup(4) = 4 x R$ 5,00 = R$ 20,00

.

.

.

q unidades – Ct(q) = q x R$ 5,00 = R$ 5q

Então, a função custo total (Ct) para produzir q unidades do produto é dada por

Ct(q) = Cup(q) + Cfp

Ct(q) = 5q + 30

b) A função receita total

A receita total (Rt) é a soma de todas as receitas. Nesse caso, temos:

Preço de Venda (V) – R$ 6,50

Analogamente, o valor V é proporcional à quantidade q , isto é:

1 unidades  – V(1) = 1 x R$ 6,50 = R$ 6,50

2 unidades – V(2) = 2 x R$ 6,50 = R$ 13,00

3 unidades – V(3) = 3 x R$ 6,50 = R$ 19,50

4 unidades – V(4) = 4 x R$ 6,50 = R$ 26,00

.

.

.

q unidades – V(q) = q x R$ 6,50 = R$ 6,50q

Então, a função receita total (Rt) que informa a receita da venda de q unidades do produto é dada por

Rt(q) = V(q)

Rt(q) = 6,50q

c) A função lucro total (Lt)

Como V = C + L, podemos expressar o lucro (L) como a diferença L = V – C.

Além disso, como V = Rt e C = Ct, podemos escrever a função lucro total como a diferença das funções receita total e custo total, assim:

Lt = Rt – Ct

Que em função do número q de unidades produzidas/vendidas fica:

Lt(q) = Rt(q) – Ct(q)

Lt(q) = 6,50q – (5q + 30)

Lt(q) = 6,50q – 5q – 30

Lt(q) = 1,50q – 30

d) O Break Even Point (BEP)

O Break Even Point (BEP) é o ponto de equilíbrio entre receitas e despesas, isto é, quando o total de receitas é igual ao total de custos e – claro – o lucro é nulo.

Desse modo, encontrar o BEP significa encontrar o valor de q que é a solução da expressão

Lt(q) = 0

1,50q – 30 = 0

1,50q = 30

q = 30/1,50

q = 300/15

q = 20

Note que a expressão Lt(q) = 0 é equivalente à expressão Rt(q) = Ct(q).

Esta última pode ser interpretada geometricamente sendo o ponto de interseção entre as retas Rt(q) e Ct(q). (veja no esquema)

e) a produção necessária para um lucro de R$ 120,00

Aqui queremos determinar a quantidade q de produtos que geram um lucro de R$ 120,00.   Mais uma vez usaremos a função lucro total que, agora, queremos que assuma o valor 120, ou seja:

Lt(q) = 120

1,50q – 30 = 120

1,50q = 120 + 30

q = 150/1,50

q = 1500/15

q = 100

Entendeu?

Espero ter ajudado.

Bons Estudos!

Para Saber Mais:

Anúncios

William e o preço de venda

Oi William, tudo bem?

A dúvida que você enviou não é tão difícil assim.

Na verdade, acredito que a interpretação do enunciado do problema ofereça mais dificuldade para iniciar a sua resolução.

Vejamos:

O lucro bruto (LB) é igual à diferença entre o preço de venda (PV) e o preço de compra (PC). Podemos escrever essa igualdade – matematicamente – do mesmo jeito que a lemos, veja:

(1) LB = PV – PC

Além disso, esse mesmo lucro bruto (LB) deverá corresponder a 40% do preço de venda (PV), ou seja:

(2) LB = 40% de PV

Observe que formamos duas equações (1) e (2) com uma parcela comum (LB).

Dessa forma, podemos substituir a equação (2) na equação (1). Assim:

LB = PV – PC

40% de PV = PV – PC

PC = PV – 40% de PV

PC = 100% de PV – 40% de PV

PC = 60% de PV

PC = 0,6PV

PV = PC/0,6

Como é dado o valor da compra, isto é, PC = R$ 750,00, substituimos esse valor na última igualdade para determinar o preço de venda procurado:

PV = 750/0,6

PV = 1250

Ou seja, o preço de venda de cada unidade deverá ser de R$ 1250,00.

Entendeu?

Espero ter ajudado.

Para Saber Mais:

O lucro da Fernanda

Oi Fernanda, tudo bem?

Bom, para que você resolvesse essa questão, bastava lembrar das definições de lucro sobre venda e lucro sobre custo.

Para uma resolução melhor, entenda primeiro essas notações:

PC = Preço de Custo

PV = Preço de Venda

LV = Lucro sobre a Venda

LC = Lucro sobre o Custo

i = taxa percentual (mas no formato decimal)

Dito isto, vejamos:

1. Lucro sobre a Venda: o lucro sobre a venda é dado pela soma do preço de custo (PC) com o produto de uma taxa percentual (i) e o preço de venda (PV).   Então podemos escrever a seguinte equação

PV = PC + i.PV

2. Lucro sobre o custo: o lucro sobre o custo é dado pela soma do preço de custo (PC) com o produto de uma taxa percentual (i) e o preço de custo (PC).   Então podemos escrever a seguinte equação:

PV = PC + i.PC

Agora, se substituirmos os dados fornecidos no enunciado do problema, teremos o seguinte:

PV = PC + 50%.PV (LV) (eq.1)

e

PV = PC + x%.PC (LC) (eq.2)

Agora, vamos “melhorar” essas duas equações, observe:

Na primeira equação

PV = PC + 50%.PV

PV – 50%.PV = PC

PV – 0,5.PV = PC

0,5.PV = PC

PV = 2.PC

Na segunda equação

PV = PC + x%.PC

PV = PC.(1 + x)

Note que, em ambos os lados esquerdos das equações temos o mesmo valor PV, então:

2.PC = PC.(1 + x)

2 = 1 + x

x = 2 – 1

x = 1

ou

x% = 100%

Ou seja, calcular um lucro de 50% sobre o preço da venda (PV) equivale a calcular um lucro de 100% sobre o preço de custo e, em ambos os casos, o preço de venda (final) será o mesmo.

Pelas alternativas de respostas que você colocou, eu marcaria a letra (c)… 😉

Na dúvida, substitua as incógnitas acima (PV, PC, etc.) por valores (aleatórios mesmo) e faça as contas.

Outra: Dê uma olhada nessa apostila de Razões e Proporções disponibilizada gratuitamente para downloads pela HRD Concursos e Assessoria.   Simples, objetiva e conta com um número razoável de exercícios de vários níveis.

Para saber mais:

 Espero que tenha passado no concurso mesmo não tendo conseguido resolver essa questão.

No mais é isso aí.

Abraços e Bons Estudos.