A equação exponencial da Luzilene

Oi Luzilene, tudo bem?

A dúvida que você postou sobre Equações Exponenciais é, na verdade, simples.   Desde que você lembre das Propriedades das Potências para isso.

Vamos lá.

Você quer a solução (ou conjunto verdade) da equação

5^{x+2}-5^{x+1}=100

Isto significa que precisamos determinar o valor da incógnita “x” tal que, quando substituída pelo seu valor correto, o resultado encontrado seja igual a 100.

Observe que as duas parcelas da equação são potências de base 5 com expoentes compostos.

Então, para melhorar a expressão dada, precisamos utilizar uma das propriedades das potências para isso:

a^{m} \cdot a^{n}=a^{m+n}

Veja:

5^{x+2}=5^{x} \cdot 5^{2}

e

5^{x+1}=5^{x} \cdot 5^{1}

Assim, podemos resolver a equação dada.  Observe:

5^{x+2}-5^{x+1}=100

5^{x} \cdot 5^{2}-5^{x} \cdot 5^{1}=100

Podemos colocar a potência 5^{x} em evidência e, dessa forma:

5^{x}(5^{2}-5^{1})=100

5^{x}= \frac{100}{20}

5^{x}=5

logo,

x=1

Ou seja, se x = 1, a equação será verdadeira.   E, de fato:

5^{1+2}-5^{1+1}=5^{3}-5^{2}=125-25=100

Entendeu?

Espero ter ajudado.

Para Saber Mais:

Anúncios

O Radical da Thesca

Oi Thesca, tudo bem?

Se entendi bem a sua dúvida, a expressão que você descreveu é essa:

\sqrt[9]{\frac{2^{28} \cdot 2^{30}}{10}}

Nesse caso, o que pode ser feito é uma simplificação das potências de base 2, assim:

\sqrt[9]{\frac{2^{28} \cdot 2^{30}}{10}}

Aplicando a propriedade para produto de potências de mesma base: “repete-se a base e somam-se os expoentes”.

\sqrt[9]{\frac{2^{27} \cdot 2^{1} \cdot 2^{27} \cdot 2^{3}}{2 \cdot 5}}

Pois:

2^{28} = 2^{27} \cdot 2^1 e 2^{30} = 2^{27} \cdot 2^3

Observe que existe o produto de duas potências iguais (2^{27}), logo podemos escrevê-la elevada ao quadrado, como segue:

\sqrt[9]{\frac{2^{27^{2}} \cdot 2^{1} \cdot 2^{3}}{2 \cdot 5}}

Agora, além de simplificar os fatores 2 (no numerador e no denominador) podemos retirar do radical a potência 2^{27}, pois:

2^{27^{2}} = 2^{2^{27}} = 2^{2^{3^{9}}} = 2^{(2 \cdot 3)^{9}} = 2^{6^{9}}

Portanto

2^6 \cdot \sqrt[9]{\frac{2^3}{5}}

E, por fim

64 \cdot \sqrt[9]{\frac{8}{5}}

Bom, apesar do atraso (grande inclusive, me desculpe…) na postagem da solução, está aí o passo-a-passo que você solicitou.

Agora, com relação a “que ocasião é usada uma conta dessas?”… (risos)

Eu diria que depende. Depende da situação, é claro. Em situações práticas (cotidianas) é muito provável que você não chegue nem próximo de algo parecido.

Em geral – para o aluno – serve para desenvolver as habilidades dentro de certo assunto porquê, à medida que os exercícios apresentam um nível de dificuldade maior, nós – professores(as) – esperamos que o aluno procure relacionar o conteúdo aprendido com a pesquisa e prática necessárias para resolver questões mais complexas.

Porém, para os alunos que desejarem seguir alguma carreira ligada às Ciências Exatas (Matemática, Física, Engenharia, Arquitetura, Computação, etc.) terá, em várias situações que “encarar” continhas como essa aí de cima.

Mesmo que tal conta não tenha – aparentemente – nenhum propósito.

Espero ter ajudado.

Bons Estudos!

Para Saber Mais:

 

As potências do Lucas

Oi Lucas, tudo bem?

Seguinte: realmente, do jeito que você escreveu a expressão, não tem como chegar no resultado que você afirma ser o correto (2^-30).

Mas um “ponto” no meio da expressão me gerou desconfiança:

[2^9 : (2^2 . 2)^3]^-3

Preciso que você confirme para mim se aquele ponto seguido do número dois (em azul) é um produto da potência pelo dois ou é o produto do expoente da potência pelo dois.

Ou se não é nada disso.

De qualquer forma, em nenhum dos dois casos acima que acabei de citar, é possível chegar no resultado que você disse.

Na verdade, o resultado que encontrei foi igual a 1, no caso letra (d) .

Veja novamente a escrita da expressão e confirme aqui, ok?

Aguardo contato.

O logaritmo escondido do Ricardo

Oi Ricardo, tudo bem?

Concordo com você que o exercício é simples.   Mas não é tão complexo como você acha.

Nem todas as equações exponenciais têm como solução algum número natural ou inteiro.   Como é o caso da expressão que você colocou aqui.   Talvez por isso não tenha conseguido resolvê-la.

Na verdade, é necessário recorrermos ao uso dos logaritmos para isso, sempre que tivermos equações dessa forma e – claro –  não conseguirmos igualar as bases das potências em ambos os lados da igualdade.

Vamos lá:

102x = 25

(uso propriedades das potências para igualar os expoentes)¹

(10x)2 = 52

(simplifico os expoentes)

10x = 5

(aplico logaritmo em ambos os lados da igualdade)

log(10x) = log(5)

(uso propriedades dos logaritmos para transformar o expoente “x” em fator)²

xlog(10) = log(5)

(uso propriedade fundamental de logaritmo)³

x = log(5)

Observe que marquei 3 passagens (os números em vermelho) no cálculo acima.   Em geral, onde os alunos erram por não relacionar os conteúdos e – também – por falta de prática.

Veja só:

1. usei a propriedade “potência de potência”, por exemplo:

26 = 22 x 3 = (22)3 = (23)2

porque

(22)3 = 22  x 22 x 22 e (23)2 = 23 x 23

2. usei a propriedade “logaritmo de potência”, por exemplo:

log(23) = 3log(2)

3. usei a propriedade fundamental (ou regra geral) para logaritmos:

loga (b) = x <=> ax = b

(com “a” diferente de zero, claro!)

Importante lembrar que quando a = 10, ela não aparece, isto é, não precisamos escrever a base do logaritmo quando ela for igual a 10.   Por exemplo:

log (b) = log10 (b)

Isso explica porque log(10) = 1 e, nesse passo do cálculo, é simplificado, observe:

log (10) = x

log10 (10) = x

10x = 10

x = 1

Entendeu?

Agora, com um pouco mais de dedicação e paciência, você certamente encontraria em qualquer livro de 7ª e/ou 8ª séries, a definição de potência de expoente negativo, como a que você mandou.  Observe a propriedade: 

a-x = (1/a)x = 1x/ax = 1/ax

Caso a base da potência seja uma fração, vale a mesma propriedade, veja:

(a/b)-x = (b/a)x = bx/ax

Então fica fácil saber a fração equivalente à potência 10-x, veja:

10-x = (1/10)x = 1x/10x = 1/10x

No mais é isso aí.

Bons Estudos.