Ter razão ou ser feliz?

Quanto tempo se perde com as vontades mais fúteis e falsas necessidades.

Todas inúteis.

Combinação perigosa que amplia o egoísmo, limita a razão e impede a maturação do ser.

A perda, então, torna-se inevitável.

Assim como os sucessivos blocos emocionais que deturpam a mais pura realidade: somos o que pensamos e vivemos o que escolhemos.

Típica profecia auto-realizável.

Então, o que pensar? O que escolher?

E mais: Como? Quando?

Qual o limite entre a “ignorância adquirida” e a “verdade emocional“, latente em cada átomo de cada célula que compõe o ser?

Qual o limite para as necessidades humanas, seus desejos e anseios?

É intrínseca a vocação humana para depender – quase sempre – do que não se precisa.

Pseudo-paradoxo?   Falácia tautológica?

Ou apenas a expressão visceral da imperfeição que impera como referência nos relacionamentos?

Porém, um pouco antes do fim, uma pergunta deveria soar sempre, para que o próprio não se instaurasse:

“Ter razão ou ser feliz?”

Não sei.

Não sei mesmo.

Aliás, gostaria de saber um pouco mais para continuar escrevendo.

Talvez – quem sabe? – eu mesmo acreditasse mais nisso.

(Marco Castro)

Anúncios

Raphael e os números menores que 30.000

Olá Raphael, tudo bem?

A dúvida que você postou é simples e faz parte do conteúdo Princípio Fundamental da Contagem (PFC).

Vamos lá.

Primeiro, observe que os números que são (estritamente) menores que 30.000 começam com os algarismos 1 ou 2, certo?

Além disso, queremos que esses números tenham (exatamente) 5 algarismos distintos (diferentes) entre si, ou seja, sem repetição dos algarismos do conjunto {1, 2, 3, 4, 5, 6}, dado no enunciado da questão.

E como fazer isso?

Simples.

Vamos separar e estudar os dois casos possíveis e analisar o resultado.

1. Números de 5 algarismos distintos que começam com o algarismo 2:

2 ? ? ? ?

Observe que onde aparecem os sinais de interrogação, estão as casas onde o subconjunto de algarismos {1, 3, 4, 5, 6} poderão aparecer em qualquer ordem, com exceção do algarismo 2, que está fixo, uma vez que estamos analisando os números (com algarismos distintos) maiores que 20.000 e menores que 30.000.

Então, pelo PFC, podemos pensar nas “escolhas” dos números para as 4 casas decimais após o algarismo 2, assim:

  • para a 1ª casa (após o algarismo 2) podemos escolher um dos cinco algarismos do subconjunto {1, 3, 4, 5, 6};
  • para a 2ª casa (após a casa do algarismo escolhido anteriormente) podemos escolher um dos quatro algarismos restantes (note que não escreverei mais os algarismos porque o raciocínio independe do algarismo escolhido e porque queremos que nenhum algarismo se repita).

O processo é recursivo, isto é, repetimos até o final.

Dessa forma, podemos escrever o produto das possibilidades das escolhas por casa decimal:

2 ? ? ? ?

2 5 x   4 x    3 x    2

Fazendo as contas, temos que o resultado do produto acima (5 x 4 x 3 x 2) é igual a 120, certo?

2. Números de 5 algarismos distintos que começam com o algarismo 1:

Note que todo o raciocínio é análogo:

1 ? ? ? ?

1 5 x 4 x 3 x 2

E obtemos o mesmo resultado: 120 números.

O resultado final será a soma dos resultados encontrados:

120 + 120 = 240

Portanto, 240 números de 5 algarismos distintos e menores que 30.000.

Entendeu?

Espero ter ajudado.

Para Saber Mais:


Olá para todos!

Antes de tudo quero me desculpar com todos que me enviaram suas dúvidas, pois não as respondi até agora… 🙂

Mas não foi proposital, podem crer.

Tentarei colocá-las em dia, apesar de saber que muitas delas tinham “prazo”.   Mas isso é outra história…

Dito isto, quero agradecer a todos também pela paciência e pelo crédito.

Um forte abraço pra todos!

Marco Castro

Ana Clara e os restos da divisão por 5

Oi Ana Clara, tudo bem?

A dúvida que você postou é simples de ser entendida, embora faça parte de um assunto mais amplo chamado Classe de Restos, que faz parte de um ramo de estudo muito importante da matemática pura chamado Teoria dos Números, que trata do estudo dos números inteiros.

Vamos lá.

Ao efetuar uma divisão entre dois números (inteiros) poderão acontecer duas coisas:

  1. a divisão ser exata e o resto igual a zero; ou
  2. a divisão não ser exata e o resto diferente de zero.

O 1º caso não tem muito o que analisar, uma vez que podemos classificá-lo como sendo a 1ª possibilidade entre os restos de uma divisão, concorda?

Então, vamos analisar o 2º caso.

Se a divisão não for exata, quais serão os possíveis valores (inteiros) para o resto?

Vamos pensar devagar.

Se dividirmos qualquer número (inteiro) por 2, poderemos ter os seguintes restos: zero (divisão exata) ou 1.

Isto porque se o resto (r) for um número maior ou igual a 2 (r > 2) podemos continuar com a divisão, concorda?

Então, o conjunto dos possíveis restos da divisão por 2 será:

r(2) = {0, 1}

Vamos pensar mais um pouco.

Se dividirmos qualquer número (inteiro) por 3, poderemos ter os seguintes restos: zero (a divisão é exata), 1 ou 2.

Pelo mesmo motivo, se o resto for maior ou igual a 3 (r > 3) podemos continuar com a divisão, concorda?

Então, o conjunto dos possíveis restos da divisão por 3 será:

r(3) = {0, 1, 2}

E este resultado pode ser generalizado, observe:

Se n é um inteiro não-nulo, então o conjunto dos possíveis restos de uma divisão por n será:

r(n) = {0, 1, 2, 3, …, n-1}

Assim, em resposta à sua dúvida, o conjunto dos possíveis restos de uma divisão por 5 será igual a:

r(5) = {0, 1, 2, 3, 4 }

Entendeu?

Espero ter ajudado.

Bons Estudos!

Para Saber Mais:

Shirley e o problema do 1º grau

Oi Shirley, tudo bem?

Realmente o problema que está lhe causando “dores de cabeça” é, de fato, simples de ser resolvido.

Trata-se de um problema que envolve um Sistema de Equações do 1º grau e, como você mesma afirmou, a resolução é montar o sistema e depois resolvê-lo.

Então, vamos lá.

1. um número tem 8 unidades a mais que outro número

Um número: x

Outro número: y

Um número com 8 unidades a mais que outro número: x+8=y

2. a soma deles (dos dois números) é igual a 54

x+y=54

Notou que obtive duas equações em (1) e (2) envolvendo as duas incógnitas (números desconhecidos)?

Então, agora basta resolvermos o Sistema de Equações do 1º grau formado por essas duas equações:

1ª equação: x+8=y

2ª equação: x+y=54

Observe que podemos substituir a 1ª equação na 2ª equação, obtendo uma única equação com uma única incógnita:

x+y=54

x+(x+8)=54

x+x+8=54

2x=54-8

x=\frac{46}{2}

x=23

Agora, basta substituir o valor encontrado para x na 1ª equação para encontrarmos o valor de y, assim:

x+8=y

23+8=y

31=y

ou

y=31

Fácil, não?

Espero ter ajudado.

Bons Estudos.

Para Saber Mais:

O resto da divisão da Regina Sheila

Oi Regina, tudo bem?

A dúvida que você enviou causa dificuldade mesmo porque não é costume da maioria pensar em problemas dessa natureza. Mas é um problema cuja resolução é simples.

Vamos lá.

Primeiro, lembre que o processo de divisão conta com os seguintes elementos: divisor (d), dividendo (D), quociente (q) e resto (r).

Dessa forma, podemos escrever o Algoritmo da Divisão:

D=d \cdot q + r

Agora, vamos pensar no enunciado do problema e usar o Algoritmo da Divisão para as informações dadas, substituindo os valores conhecidos.

Assim:

1. o número p é natural e, quando dividido por 13, deixa resto igual a 5;

p=13 \cdot q + 5

2. qual o resto da divisão de p – 5 por 13?

Observe que, da igualdade anterior, podemos chegar a essa resposta:

p=13 \cdot q + 5

p-5=13 \cdot q

dividindo ambos os lados da igualdade por 13, obtemos

\frac{p-5}{13}=\frac{13 \cdot q}{13}

então

\frac{p-5}{13}=q

Isto significa que a divisão de p – 5 por 13 é igual ao quociente (q) somente, ou seja, a divisão é exata.

E toda divisão exata tem resto igual a zero!

Entendeu?

Aliás, repare que essa informação está implícita no Algoritmo da Divisão que escrevi (ali em cima):

D=d \cdot q + r

D-r=d \cdot q

então

\frac{D-r}{d}=q

ou

\frac{D-r}{q}=d

Então, sempre que subtraírmos o dividendo (D) pelo resto (r), a divisão se torna exata.

Observe um exemplo bem simples: 11 dividido por 2.

É uma continha fácil e rápida de se fazer, inclusive mentalmente, certo?

Mas vamos usar o Algoritmo da Divisão para pensar no resultado acima:

11=2 \cdot 5 + 1

11-1=2 \cdot 5

10=2 \cdot 5

então

\frac{10}{2}=5

ou

\frac{10}{5}=2

Simples, não?

Espero ter ajudado.

Bons Estudos.

Para Saber Mais:

Kamilla e a força elétrica

Olá Kamilla, tudo bem?

A dúvida que você postou (apesar do desespero) é, na verdade, simples de ser resolvida e faz parte do conteúdo de física chamado Eletrostática.

Aliás, a questão do fenômeno físico em si é – também – extremamente simples porque, como você já deve saber, cargas elétricas com sinais opostos se atraem, com sinais iguais se repelem. E pronto!

Agora, chegar a um resultado matemático sobre alguns desses problemas é que causam dúvidas, não é?

Veja, nese caso os dois pontos que geram as maiores dúvidas são em conteúdos matemáticos e não físicos: operações com potências de dez (números escritos em notação científica) e propriedades das potências (principalmente as duas mais conhecidas e usadas: produto e quociente de potências de mesma base).

Vamos lá.

As cargas elétricas possuem mesmo valor e mesmo sinal então, não poderia ser diferente do enunciado do problema: elas irão se repelir mesmo…

Nesse caso podemos representar ambas as cargas por uma única letra, digamos “q“.

A expressão para a determinação da Força Elétrica entre duas cargas elétricas é

F= k \cdot \frac{q_1 \cdot q_2}{d^2}

Onde:

F: é a Força Elétrica (N = Newton – unidade de força) de interação entre as cargas elétricas q_1 e q_2

K: Constante Eletrostática (k = 9.109 N.m2/C2)

q: Carga Elétrica (C= Coulomb – unidade de carga elétrica)

d: Distância entre as cargas elétricas (m = metro – unidade de distância)

Bem, as informações dadas no enunciado do problema são as seguintes:

F = ? (é o que desejamos calcular, certo?)

K = 9.109 N.m2/C2 (seu valor não é dado no enunciado, mas em geral os alunos devem (ou deveriam saber)

q = 10^{-12} (em módulo, já que ambas as duas cargas são negativas)

d = 10^{-4} (medida da distância entre as duas cargas elétricas dadas)

Agora, basta substituir os valores informados (e devidamente convertidos para as unidades do S.I., quando for o caso) na fórmula descrita acima:

F= k \cdot \frac{q_1 \cdot q_2}{d^2}

F= 9,0 \cdot 10^{9} \cdot \frac{(10^{-12}) \cdot (10^{-12})}{(10^{-4})^2}

F= 9,0 \cdot 10^{9} \cdot \frac{(10^{-12})^2}{(10^{-4})^2}

F= 9,0 \cdot 10^{9} \cdot \frac{10^{-24}}{10^{-8}}

F= 9,0 \cdot 10^{9} \cdot 10^{-16}

F= 9,0 \cdot 10^{-7}

Ou seja, nas condições dadas no problema, a força de repulsão entre as duas cargas será de F= 9,0 \cdot 10^{-7} N.

Entendeu?

Espero ter ajudado.

Para Saber Mais: